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Abstract

Modern neural networks are excellent at a variety of tasks, ranging from vision to
text generation, but recently there has been a push for interpretability of these deep
neural nets, birthing a new field called Mechanistic Interpretability. Mechanistic
Interpretability seeks to reverse engineer neural networks, but due to the scale
and complex computations of neural networks, phenomena such as superposition
obscure what is actually happening. In an effort to improve transparency, this paper
finds polysemantic neurons that demonstrate superposition, where a single neuron
is used for identifying multiple concepts / features. We cluster high activating
images for specific filters to verify that neurons are polysemantic then proceed to
isolate the corresponding subnetworks. This paper uses continuous sparsification
to isolate subnetworks, in contrast to other scoring metrics that yield much less
sparse networks. This work adds to the growing body of work on interpretability,
but specifically is one of the first works on causal dissection of neurons.

1 Introduction

Recently, a considerable body of research has delved into deciphering the mechanisms which Deep
Neural Networks (DNNs) employ to approximate complex functions. Much of this research has
revolved around reductionist analyses, focused on characterizing the specific weights, activations,
and circuits through correlative and causal analyses [2, 3, 9, 13, 17, 23]. These works are part of a
broader effort across deep learning to understand and manipulate the latent features learned by DNNs,
resulting in techniques including linear probing, causal meditation analysis, and path patching. [1,
22, 23]. While this past research has given the deep learning community far better intuition on the
probable mechanisms by which DNNs learn, the precise function of most specific neurons is still
unknown.

The reason for this ambiguity is the effect of superposition. While some neurons map exactly to
interpretable features, most do not; instead, specific neurons often map to two or more features,
clouding interpretablility. This arises when there are more features than dimensions represented
within the latent vector space of a specific hidden layer [4]. Each neuron may be thought of as an
axis-aligned orthogonal direction in the hidden layer latent space. When there are more features than
units in a hidden layer, the internal machinery of a DNN cannot cleanly represent each feature by an
orthogonal direction. Thus, some proportion of neurons become polysemantic (i.e. represent multiple
features). These polysemantic neurons are very difficult to interpret as they may excite or inhibit
various features. However, prior art suggests that the activating effects polysemantic neurons may be
separated into semantically similar groups [6, 16].

We hypothesize that within a particular neuron, semantically different groups arise via statistical
independent processes. As a result, we should be able to find a subnetwork (also referred to as a



Figure 1: (Top) The Effect of Superposition [4], (Bottom) Subnetwork Extraction Depiction

circuit in some contexts) that highly activates only one semantically similar group in a polysemantic
neuron. A subnetwork of a neural network is a sparse subset of neurons that isolates some particular
task in the neuron network. A common perspective views DNNs as complex feature engineering
machines with a final regression or classification head. Through this lens, subnetworks isolate
specific feature computation routes in the larger logit generating graph. Past research has shown
that sparse subnetworks may effectively isolate specific tasks in multi-task models and specific
data-processing techniques [12, 19]. We compare the efficacy of heuristic scoring methods and
L0 regularization techniques for subnetwork creation to isolate sparse monosemantic routes from
originally polysemantic neurons. This is an invaluable exploratory tool to causally decipher the inner
workings of DNNs at a neuron-level analysis.

Our main contributions are:

• We identify a number of polysemantic neurons in Sparse AlexNet convolutional layers six,
eight, and ten through Hierarchical Based Density Clustering. We qualitatively characterize
the semantic groups that generate excitatory responses in these neurons.

• We convert each polysemantic neuron to a set of subnetworks for which the neuron is
monosemantic. We compare subnetwork creation using score-based heuristics and continu-
ous L0 regularization.

• We develop evidence to confirm that semantically different groups arise via statistical
independent processes. This evidence is important for a broader discussion of how neural
networks generate latent spaces.

2 Related Works

We build on recent research in mechanistic interpretability and network sparsification.

Elhage et al. demonstrates that superposition is observable in multiple toy models. Elhage also shows
that (1) computation is possible in superposition, and (2) network representations are composed of
many independently interpretable features represented by directions [4]. This makes the relationship
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between superposition and polysemanticity clear. Since a polysemantic neuron recognizes multiple
different features or concepts, computation would be in superposition if features are unrelated.

The field neural network sparsification dates back to the late 1980s with Mozer & Smolensky
[15]. There has been significant work in pruning neural networks to increase weight efficiency and
reduce compute in application [7, 8, 14, 24]. Recently, there has been much research on extracting
subnetworks, which may be thought of as pruning a network, but for an objective function that
differs than the original objective function [12, 18, 20]. We utilize past heuristic scoring [10, 14, 15]
and L0 regularization techniques [20, 21] for pruning. This research was inspired by the "Lottery
Ticket Hypothesis," which suggests combinatorial optimization of randomly initialized networks can
approximate useful functions [5].

Hamblin et al. serves as the key motivation for this paper, as they provide a strong framework for
pruning to find networks that activate polysemantic neurons in a monosemantic manner[6]. They cre-
ate a strong pipeline to (1) identify polysemantic neurons, and (2) prune circuits using saliency based
criteria. We differentiate ourselves from this research by utilizing subnetwork discovery mechanisms
based on optimization with L0 regularization, rather than simple scoring heuristics. Moreover, we
provide important combinatorial analysis on the subnetworks that comprise polysemantic neurons.

3 Methods

3.1 Finding Polysemantic Neurons

We attempt to find polysemantic filters in CNNs, meaning they activate for images of multiple distinct
and separate categories. These filters raise the question of what computations are responsible for their
selective activations across various categories. Take for example a filter that activates strongly on
both porcupines and dogs. There are two possible situations now, that the filter responds to some
commonality between both porcupines and dogs or that the filter is encoding separately for both
porcupines and dogs. If the filter is responding to some similarity between porcupines and dogs, that
means that it would be very difficult to separate the activations of the two different classes. However,
if the filter was encoding them separately and they were put together just for the purpose of network
compression, then it would suggest different computations are leading to these high activations
[6]. First, to find these polysemantic filters, we pass all images in ImageNet through the network,

Figure 2: Sample Clusters for Polysemantic Filters
(Left) AlexNet Convolutional Layer 10, Unit 15

(Right) AlexNet Convolutional Layer 10, Unit 167

recording activations for a selected filter in a selected layer. Using receptive fields, we only record the
activation of the filter when it is at the middle of the image. Hence, these activations are all scalars,
so we know which images activate the filter the most. Now that we have the images that produce
the highest activations on the filter, we now want to see if the filter is truly polysemantic. To do this,
we record the center activations of all filters at the specified layer. We then apply HDBSCAN, a
clustering algorithm to this high dimensional data. As mentioned earlier, if we see multiple clusters
then we hypothesize polysemanticity exists in the selected filter.
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3.1.1 Receptive Fields

Receptive fields are the regions that can affect the activation of a filter from the immediately previous
layer. For example, if our filter is a [5× 5] filter at layer 1, for an input size of [32× 32× 3], then
the receptive field will be of size [5× 5× 3]. When computing an activation, the receptive fields is
essentially the salient region of the previous layer. Effective receptive fields are similar, but are the
salient region of the original image rather than the previous layer. In CNNs the ERF grows from layer
to layer because more of the image affects the activation [11]. Taking this into account, images were
cropped to the ERF of the center application of the filter that we wished to experiment on. This is
how we were able to extract scalar activations that still represented the entire image.

3.1.2 Subnetwork Pruning

After we find these polysemantic neurons and cluster these images, we aim to show these neurons
are truly polysemantic. Using pruning we can find subnetworks that correspond to one of the
polysemantic meanings. We want to preserve the network’s ability to activate on one of the two
clusters while reducing the number of overall parameters. In order to do this we use several scoring
methods and a masking method from Hamblin et al. [6]. If the found subnetworks show significantly
different activations for images other than their respective cluster, then we have found the part of the
network that corresponds to the cluster in question.

3.2 Pruning Scoring Methods

We use Hamblin et al.’s feature-wise saliency criteria to develop a baseline for subnetwork extraction
performance. [6]. These methods approximate |∆f | where f is the objective function for which
the subnetwork is evaluated. Specifically, we test ActGrad, SNIP, and FORCE. We evaluate the
viability of each of the below methods on extracting subnetworks which convert each polysemantic
neuron to monosemantic in semantically similar images.

3.2.1 ActGrad

This scoring procedure was designed for filter pruning. It computes score with respect to a filter’s
activation map [14].

Sa(θj ; f,x) =
1
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3.2.2 SNIP

Originally introduced in Mozer & Smolensky, this criterion computes score with respect to the
weights in a kernel rather than activations in order approximate the change in an objective function
[15].
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3.2.3 FORCE

This scoring method iteratively computes SNIP on a sparser and sparse subnetwork in the hope
of approximating θ’s importance in the subnetwork rather than the original dense network. The
intuition behind this is that removing a particular θ may have a completely different effect when other
parameters are being pruned than when it is complete [6, 10].

3.3 Continuous Sparsification

All of the above methods are heuristic saliency-based methods. We want to search for or learn the
subnetwork in a way that is free of assumptions about the target sparsities. Finding a subnetwork
that contributes a feature to a polysemantic neuron is equivalent to learning a mask over the network
specifying membership to the subnetwork. Learning the binary values of the mask is a search over a
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discrete space too large to brute force search. In order to learn the mask, we apply the Continuous
Sparsification technique introduced by Savarese et al. [20]. For every parameter p that we would like
to learn a mask for, we create a parameter m so that σt(m) is the mask for p where σt(x) =

1
1+e−tx is

the Sigmoid function. We will freeze the original weights of the network so that we are only learning
this mask. After each epoch, we raise the temperature t, pushing σt(x) closer to 1 or 0 and further
from 0.5. Thus the surface we are optimizing over becomes closer and closer to the step function we
want. We follow an exponentially annealing schedule for temperature increase. We let temperature
range from 1 to 200 by scaling the temperature by 2001/(n−1) when training for n epochs.

Figure 3: (Left) Sigmoid Function with Temperature between 1 and 200
(Right) d

dxσt(x) Plotted Against σt(x) with Temperature between 1 and 200

For any t, optimizing this mask is a differentiable. We apply stochastic gradient descent with
momentum and a loss function defined below to find a mask.

We are interested in finding the weights in the network that contribute most to the high activation of
our neuron of interest for one cluster. Because high activation for our cluster only has meaning relative
to the activation of everything else, we will use Binary Cross Entropy Loss against an indicator
function of membership to the cluster of interest to emulate emulate a contrastive loss. In order to
ensure that we are learning a subnetwork, we also include a term to encourage sparsity in our loss.
This is complex because we do not want to penalize the mask values close to 1, but we want to
encourage those in the middle to descend to 0. Thus the regularization we want is L0 loss, which for
a model with parameters P , is defined to be

L0(P) :=
∑
p∈P

1p ̸=0

We approximate with the sum of the values of the mask. This is a very effective approximation as
when σt(x) is close to 0 or 1, the derivative is small, but d

dxσt(x) is maximized when σ(x) = 0.5.
This property also varies very little with temperature. As noted in Savarese et al. [20], the Continuous
Sparsification method is powered by this L0 regularization. This follows from the fact that masking
can be represented as an L0 problem. This is confirmed by our results showing that this masking
objecting is extremely effective.

3.4 Neuron Visualization

In order to generate visualizations, we used Lucent, a library for neural network interpretability and
visualization. We used Lucent to visualize which features activate a selected filter. This is done
through first generating a random image, then performing gradient descent on the image itself to
see what image will generate the strongest activation from the filter in question. If our approach is
successful, we would see multiple concepts in the visualization of the filter before network pruning
and then see singular concepts afterwards.

5



4 Results

4.1 Subnetwork Metrics

Heuristic scoring methods for identification of subnetworks require target sparsities. These scoring
methods fail to be effective below 10% target sparsity. Our method does not as we chose whether to
include each particular candidate neuron in the subnetwork not by how it’s salience compares to other
candidate neurons, but directly with a loss function on the activations of the downstream neuron of
interest. This brings great interest to the question what sparsity will our method yield. We find that
we consistently find subnetworks with 3%-7% sparsity. This shows that our technique more stably
identifies the core subnetwork that contributes a given feature. Furthermore, we assess how well
monosemantic subnetworks were identified by qualitatively observing how the distance between the
activation distibutions were pushed apart.

Figure 4: AlexNet Layer 10 Unit 255 Activations
(Top) Top 1000 Dog and Stripe Activations

(Middle) ActGrad, SNIP, and FORCE Dog Subnetwork Activations
(Bottom) Continuous Sparsification Dog Subnetwork Activations

Above are selected results for Convolutional Layer 10, Unit 255, which has two many semantic
clusters corresponding to dogs and stripes. As seen in the above graphs, these two activations
are initially overlapping but can be separated into two distributions using both Heuristic and L0

regularization methods. As seen in the above graphs, FORCE and L0 regularization perform the best
as the two cluster distributions are separated the most. This trend was also seen in Units 167 and 15
of Convolutional Layer 10 and Unit 25 of Convolutional Layer 8.

4.2 Visualizations

Visualization analysis necessarily has to be qualitative. In clustering Convolutional Layer 10, Unit
255 which corresponds to both stripes and dogs, the visualizations appear to show that the subnetwork
trained to boost the activations of stripes (the stripe subnetwork) show more alternation. This would
cause increased activation at images of stripes. However there are many artifacts in these images that
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less convincingly belong to either class. Most generated images have large white spots. Two possible
causes are the the limited size of the clusters or the sparsity of the networks. Further work would
ablate both of these factors. The images below are for the same neuron and clusters, but are produced
with ActGrad, which produces much less sparse subnetworks.

Figure 5: Backpropagation generated images for Layer 10, Unit 255
(Left) Original

(Center) Subnetwork for Stripes
(Right) Subnetwork for Dogs

5 Discussion

In this research, we explore the hypothesis that superposition in DNNs arises through statistically
independence processes. We find strong supporting evidence in that we can identify distinct, sparse
subnetworks that contribute to each semantic function of a polysemantic neuron. We show that
approximating L0 regularization through temperature-scaled sigmoided masks outperforms objective
function preservation scoring heuristics from Hamblin et al. However, we find that the L0 regulariza-
tion procedure shown in continuous sparsification sometimes meaningfully alters activation behavior
for examples that are not included in the continuous sparsification dataset. Finally, we visualize
original and subnetwork neurons to qualitatively assess polysemanticity dissection quality.

In the broader context of mechanistic interpretability, we believe that this research represents an
important method for causal dissection of neurons. While methods like path-patching and neuron
ablation show the effects of altering or zeroing activations on resultant logits, this method represents
a first step into direct analysis of neuron function. Future research should (1) analyze the discovered
monosemantic subnetworks, (2) identify deterministic behavior in neural polysemanticity among
different neural networks or random initializations, and (3) develop methods to dissect more complex
polysemantic kernels. We would also enjoy seeing future research that replicates results in a natural
language domain or using transformers.
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