Are PPO-ed Language Models Hackable?

Suraj Anand David Getzen

Abstract

Numerous algorithms have been proposed to align language models to remove
undesirable behaviors. However, the challenges associated with a very large state
space and creating a proper reward function often result in various jailbreaks. Our
paper aims to examine this effect of reward in the controlled setting of positive
sentiment language generation. Instead of online training of a reward model
based on human feedback, we employ a statically learned sentiment classifier. We
also consider a setting where our model’s weights and activations are exposed to
an end-user after training. We examine a pretrained GPT-2 through the lens of
mechanistic interpretability before and after proximal policy optimization (PPO)
has been applied to promote positive sentiment responses. Using these insights, we
(1) attempt to "hack" the PPO-ed model to generate negative sentiment responses
and (2) add a term to the reward function to try and alter ‘negative’ weights.

1 Introduction

Large language models have powerful emergent capabilities from self-supervised training on natural
datasets [Brown et al., 2020} Wei et al.,[2022]. This training results in high performance next-word
prediction; however, as most are trained on large internet corpuses [Gao et al., 2020, [Zhu et al.| 2015]],
vanilla training results in a number of undesirable behaviors such as toxicity, bias, negative sentiment,
and instruction-following failure [Sheng et al.|[2019,|Gehman et al.}2020]]. These shortcomings have
led to the use of post-training patching to correct undesirable behaviors. Namely, various algorithms
have been proposed to align language models under the hood of reinforcement learning from human
feedback (RLHF) [Kaufmann et al.,[2024]).

RLHF introduces a critical online, human-in-the-loop component to the standard language model
learning paradigm. In standard reinforcement learning, an agent attempts to make optimal decisions
based off a reward function that it aims to maximize Sutton and Barto|[2018]]. However, specifying
this reward function is often quite challenging; sparse rewards result in the need for reward shaping
and loopholes result in the issue of reward hacking [Ng et al., 1999, Skalse et al.| [2022].

The challenges associated with creating a proper reward function often result in various jailbreaks
[Rao et al 2024} ILi et al.,|2023]]. Our paper aims to examine this effect of reward in the controlled
setting of positive sentiment language generation. Instead of online training of a reward model based
on human feedback, we employ a statically learned sentiment classifier. We also consider a setting
where our model’s weights and activations are exposed to an end-user after training.

We rely on recent insights from the field of mechanistic interpretability to jailbreak an aligned
model [Olah, 2022]. This field focuses on reverse-engineering model components into human
understandable algorithms, and usually involves neuron, weight, and activation level analysis to
do so. In this discipline, we view a model as a computational graph based on soft cause-and-
effect relationships [|Geiger et al.,|2021]. In this research, we examine a pretrained GPT-2 through
this perspective before and after reinforcement learning has been applied. From this, we glean a
causal understanding of model changes and insight into how to potentially "hack" an aligned GPT-2.
Moreover, we attempt to utilize these insights to modify our reward function by adding a loss term
that targets certain weights in our model.

Preprint. Under review.



PPO Positive

Natural Sentiment
Language Classifier
Actor | Critic
Generator DistiiBERT
—

(® GPT-2) =

Figure 1: Our controlled setup employs a pretrained GPT-2 model to generate sequences (rollouts)
and a DistilBERT classifier to evaluate the sentiment (reward).

Our main contributions are:

1. We analyze what causal changes PPO results in on GPT-2 at an activation and weight level.

2. We attempt to engineer a methodology that circumvents these changes to output negative
sentiment sequences.

3. We experiment with the reward function to try and mitigate this jailbreak.

2 Related Works

Our contributions build upon recent and concurrent research in the field. [Gehman et al., 2020]
establishes the urgency of toxicity avoidance as a problem space, showcasing the ease with which
pre-trained language models generate outputs reflecting toxic sentiment given prompts of any kind.

A framework for leveraging word vectors to capture sentiment is presented in [Maas et al.l 2011b],
wherein sentiment polarity annotations, such as metrics that correspond to reviews or critiques, are
utilized in the generation of sentiment predictions with significant success. This project additionally
introduces a sizable dataset of movie reviews extracted from the service IMDDb to be used within the
context of sentiment classification.

We are motivated by the mechanistic unalignment methodology found in [[Lee et al.,|2024]. This
research discovered that a model aligned with Direct Preference Optimization to avoiding toxicity
in its outputs accomplishes favorable returns only by learning an offset. As such, the model avoids
internal representations of vectors that would trigger output toxicity rather but does not remove toxic
weights altogether. We extend this research to (1) consider positive sentiment generation, (2) examine
PPO, and (3) introduce a loss function to attempt to remedy this shortcoming.

We build off internal representation translation work that began with jnostalgebraist| [2020], which
introduced a "Logit Lens", or an un-embedding mechanism that allows the projection of token
representations from an intermediate embedding space to a final vocabulary space, enabling the
observation of tokens that are generated in each subsequent embedding layer within a transformer-
based language model. A closer glimpse at the internal behavior of a transformer-based language
model is found in [|Geva et al.| 2022[] where it was observed that tokens are hierarchically ordered
through each sub-update in the feed-forward embedding layers of transformer-based language models,
with each intermediary output token being assigned a certain value-vector v; corresponding to the
probability of its expression in the next embedding layer.

Within the context of our project, we aimed to leverage the method proposed by |Geva et al.| [2022]] as
a means of finding weights with negative sentiment, then inflating their corresponding activations to
promote their associated concepts within the final output of a pretrained, transformer-based language
model, un-aligning the impact of PPO on fitting it to the task of output toxicity.



3 Preliminaries

We borrow much of the transformer and vocabulary space notation from |Lee et al. [2024] and (Geva
et al.|[2022] to express our experiments.

3.1 Transformers

We employ an encoder-only transformer-based language model. Transformers consist of an embed-
ding layer, E € RIVIX4_a series of L transformer layers, and then an unembedding layer U € RIV x4
which can be tied to the embedding layer [Vaswani et al.,[2023]]. Each layer ¢ consists of multiple
attention heads as well as a multilayer perceptron (MLP) layer.

Given a sequence of input w = {wy, ..., w;}, the transformer first applies F to create an embedding
x; € R for each token w; € w.

This representation is then updated by attention heads and MLP blocks each layer that follows:
xf,; = af + MLP!(2f + Att!(2))
We denote this token-wise representation as the "residual stream," following previous literature. In

our encoder-only GPT structure, the updates to the residual stream from each MLP block are able to
be further decomposed into two linear transformations with nonlinear activations in between:

MLP!(2°) = o (W4 2®) W
K \4

where W, W¢, € R0 Xd We call the i-th row in W% as MLP!z* and refer to them as key-
vectors, and the i-th column in W¥, as value-vectors (we sometimes omit “MLP” and just use &, vf).
The output of MLP blocks is the sum of its value vectors v;, each scaled by a coefficient value mf,
where mf = o (W%xe)i.

3.2 Vocabulary Space Translation

Geva et al.|[2022]] demonstrate that as the residual stream is processed, each value vector v; either
promotes or suppresses the likelihood of a token w to be generated:

p(w|z¢+mivl, E) o exp (ey - 2) - exp (ey - mivy)

1)

where e,, is the embedding of w. As such, when e,, - mfvf > 0 we see that the likelihood of w
increases, while e,, - m{v{ < 0 decreases the likelihood of w]]

3.3 Reward Function for PPO

The objective of Proximal Policy Optimization (PPO) is to maximize a reward function r(6) using
a policy 7y parameterized by 6 [[Schulman et al.,[2017b]]. Given a static reward model R(w) (our
sentiment classifier) on GPT-2, where w represents a sequence of tokens generated by the model, the
reward function can be defined as follows:

7(0) = By, [R(w)]

PPO seeks to maximize this reward while keeping the policy changes between updates constrained,
to avoid large deviations from the existing policy. The probability of generating a sequence w under
policy 7p is denoted as g (w).

3.3.1 PPO Objective
The PPO objective L(#) can be expressed as:

L(0) = By, {mm (”"(“’)A(w),cnp (”9(“’)) 1—e1+ e> A(w))]

TOo1a (U)) 0514 (w

'Note that e,, - v¢ does not depend on the input and it is only when v is scaled by m? result in any change
to output distribution.



where:

* A(w) is an advantage function that estimates how much better w is compared to other
possible sequences.
* ¢is a hyperparameter controlling the clipping range.
The above objective ensures that policy updates are made conservatively to prevent large changes,
which aligns the PPO policy to the static reward model without major changes to output distribution.
The rewards as rollout is calculated are KL penalties and the final reward after the EOS token adds

the sample score. This is a simpler and more efficient way to limit policy changes compared to TRPO
[Schulman et al.,[2017al.

3.4 Combined PPO Reward Function

To combine the reward function 7(6) with the PPO objective, the final reward function can be
expressed as:

Tppo(0) = L(0) + MBEwrr, [R(w)]

where \; is a hyperparameter balancing the two components of the reward function.
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Figure 2: Histogram of sentiment of responses in heldout test set pre and post PPO the GPT-2.

4 Sentiment in GPT-2

Throughout our experimental process, we used a GPT2 model fine-tuned on the Stanford Natural
Language Processing Large Movie Review Dataset, which consisted of 50,000 highly polar film
reviews extracted from the service IMDb. The dataset assessed the sentiment of a review as either
"positive" or "negative".

4.1 Negative Weights

With section [3.2] as a preface, we assessed negativity in weights by examining the value-vectors
corresponding to each token.

To do so, we trained a linear probe to discern negativity on the last-layer internal representations of
sentences (created by token-wise averaging) from the IMDb sentiment dataset [Maas et al.,2011al.
We extracted the vector W, from the probe weight. This is the vector orthogonal to the hyperplane
that separates negative and positive sentiment representations. To find the value-vectors v] affiliated
with the most negative tokens consisted of finding those with the highest cosine similarity to Wee
generated from the & most negative value weights within the leveraged dataset.



Consulting table[T] it can be discerned that a group of the most negative weights, or those with the
highest cosine similarity with our negative probe vector, correspond to sets of tokens comprised
of phrases that reflect significantly negative sentiment. Each token-set has a negatively-ranked
value-vector assignment, and this particular group of the most negative token-sets are positioned
across layers 6 through 9 of our pre-trained, un-aligned GP2 model. Interestingly, we found that the
vast majority of ‘negative’ value vectors were located in the second half of the layers in the model.

Table 1: ‘Negative’ Weights in GPT-2 and the PPO-ed GPT-2 mapped into the vocabulary space by
using the method proposed by |Geva et al.| [2022]]

Layer Index

GPT-2

PPO-ed GPT-2

7 2394 useless, mediocre, worthless useless, mediocre, worthless

6 2360 unus, disastrous, deteriorated unus, disastrous, deteriorated

9 3047 negligible, diminished, fewer negligible, diminished, fewer

7 2464 fail, Fail, Wrong fail, Fail, Wrong

8 2635 bad, horrendous, problematic bad, horrendous, problematic

9 484 insufficientlessness, inability, incorrect  insufficientlessness, inability, incorrect

S Promoting Positivity with PPO

We perform PPO (described in section in order to promote positive sentiment responses by
GPT-2. In our formulation, we employ a DistilBERT [Sanh et al., [2020] finetuned on the IMDb
sentiment dataset to classify sentiment as our reward model. We employ the trlx library to perform
this reinforcement learning [Havrilla et al.}2023]]. We find that the average sentiment score across
a heldout prompt set was 0.27 for the original model and 0.80 on the PPO-ed model. This shows
that our model can now successfully generate positive sentiment responses to a diverse set of input
prompts.

To get a better understanding of what changed under the hood, we perform a mechanistic analysis
of the pre and post PPO-ed model. This helps us causally determine how the model was changed,
and whether its alignment with the task of output toxicity occured only due to learning an offset that
would enable the avoidance of toxicity-activating vectors. With a finer glimpse into how positivity
is promoted by a PPO-finetuned GPT-2, a foundation for efforts toward preventing its mechanistic
un-alignment with respect to a given task can be formed.
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Figure 3: Weights are minimally changed by Proximal Policy Optimization of the full GPT-2 model.



5.1 Weights are Minimally Altered

As evident by fig. [3] the weights of GPT-2 are only very slightly modified by PPO. In fact, almost
all modified weights remain at a cosine similarity of > 0.9998 with their original values. It was
surprising to us that this little of a change to weights can cumulatively result in a change in behavior
toward positive sentiment results. Additionally, we ran experiments where only a subset of layers
were allowed to change with PPO (2 layers, 4 layers). In these experiments, the cosine similarity
values were slightly lower, but still well over 0.9995 for the significant majority.

5.2 Negative Weights Remain

We find that the ‘negative’ weights discovered earlier in our research remain almost completely
unchanged in table[I] This suggests that PPO learns a wrapper around the model that is similar to the
offset that is found in Lee et al.|[2024]). This is suboptimal as it means that negative concepts may
still be stored within the model’s weights which are not removed from PPO. However, it is expected
as PPO used a clipped objective that tries to make only very small changes to the policy.

Moreover, this suggests that we might be able to still promote concepts in the negative sentiment
space by simplying scaling up the coefficients m! that correspond to each negative value vector (or
similarly by increasing the activation after this vector). We test this intervention in the following
section.
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Figure 4: (Left) Logit lens shows that negative concept activations scaled down across model residual
stream (this is specifically for the word sh*t). (Right) The activation differences for the ten most
‘negative’ value vectors.

5.3 Activations Change

We utilize the logit lens method to determine the extent of negative concept activation change
over time [nostalgebraist, 2020]. Essentially, to do this, we take the softmax of Uxﬁ 41 (.e. the
unembedding matrix multiplied by the residual stream of the next token at layer ). We find a common
trend that concepts overall were less promoted in the residual stream after PPO. This is consistent
with the fact that our PPO successfully results in positive sentiment changes. Interestingly, we find
that this change in concept promotion happens throughout the model when all layers are fine-tuned,
rather than simply in the last couple of layers.

In addition, we quantify how much the activations change from before and after PPO for a heldout
set of the negative response generating prompts for the top & ‘negative’ value vectors. To do this,
we simply take the delta of the two values. The results can be seen in section[5.2] Surprisingly, the
activations are not consistently lower magnitude, but instead some ‘negative’ weights are activated
to a higher degree. We hypothesize that this might be due to the fact that there is some randomness
in the weight selection; moreover, we still find that overall ‘negative’ concepts are promoted less in
the residual stream. Thus, even though some activations might be higher, in total they result in less
strength in the residual stream.



5.4 Activation Scaling

To "hack" PPO, we try scaling the key values that correspond to each of the top k negative value
vectors by a factor of 10 to promote negative concepts in the unembeddings space to be added to
the residual stream. We were slightly unsure whether this would work due to our strange results in
section What we found was that this did effectively promote negative concepts and revert the
positive changes of PPO. The mean sentiment on our heldout test set went from 0.80 to 0.43, which
signifies that we effectively jailbroke the model to generate negative sentiment outputs. Note that this
required access to the weights a priori.

5.5 Regularization

To mitigate the issue that our model simply wraps computation to avoid stored ‘negative’ weights
rather than removing ‘negative’ weights, we add a term to the reward function that rewards this
behavior. In a simple depiction, this can be thought of as

r=r(0®)—\rir

r=7(0) = Mrrr + A2 Y | — Worigina|
weN

where w € N are the negative weights in the negative weight set, where this set has a cardinality of
10. We altered trlx code in our to get this functionality possible. We chose a Ao = 10~%, but played
around with it a little bit. We added this reward to the end of the rollout (at the same time the positive
sentiment reward is calculated). We were able to achieve results that altered the weights, but were
not able to find a stable hyperparameter that was a good medium between (1) altering the weights
enough to meaningfully store remove the negative information and (2) maintaining the stability of
the output distribution. When the parameter for removing negative weights was too high, it would
cause instability in the output generation and break natural language function. Overall, we think that
this is a good approach, but need to better conduct a more rigorous and fine-grained search over the
hyperparameter space of Ay

6 Discussion

In this work, we studied a mechanistic account of how reinforcement learning alignment algorithms
alter models. We specifically took PPO, and its use as an alignment algorithm in fitting a pre-trained
GPT2 to the task of avoiding negative sentiment, as a case study. To do so, we uncovered how
negative sentiment is represented and elicited in a pre-trained language model. Applying the insights
provided into the use of value-vectors within the context of transformer-based language models by
[Geva et al.,|2022]], we found numerous vectors in MLP blocks that promote negative sentiment, for
which subtracting these vectors from the residual stream can suppress negative outputs. We then
applied PPO to our language model to alter model weights to promote positive sentiment outputs
successfully. Finally, we studied how our aligned GPT-2 averts negative sentiment. Rather than
removing ‘negative’ weights, the PPO-ed GPT-2 alters the activations of a number of very, very small
changes to the weights, but in a manner that is somewhat surprising to us. That is, the activations
of a few negative weights were somewhat higher after the application of PPO. However, with this
as an exception, weights that corresponded to toxicity were, on average, promoted less throughout
the progression of the residual stream. While the specific behavior of the PPO-ed GPT2 differed
somewhat from the DPO-centered findings of [Lee et al., 2024, the overall potential for un-alignment,
or "hackability", was demonstrated nonetheless in our findings due to a similar tendency of PPO to
facilitate only an avoidance of toxic activation regions in a transformer-based language model.

This enables the model to preserve its pretrained behavior while averting negative outputs. This is
expected as PPO results in small policy changes that minimally change the output distribution.



Given this understanding, we show how to "hack" the alignment of the PPO-ed GPT-2. That is,
we simply increase the regions that elicit negative sentiment by scaling their corresponding key
vectors. We find this hack successful. Finally, we attempt to alter the reward signal with mechanistic
information to remove negative stored weights from our model. This methodology showed promise,
but a more intensive hyperparameter search is necessary in order to balance stability of natural
language output distribution generation and removing negative weights.

Overall, this was a mechanistic case study for how Proximal Policy Optimization alters models,
whether we can jailbreak these models, and one simple attempt to patch this. We hope that in the
future this can act as a stepping stone to more robust alignment algorithms.
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