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ABSTRACT

Deep neural networks (DNNs) often entangle features in latent representations leads to a
reliance on spurious correlations, black-box behavior causing uninterpretable predictions,
and non-compositional representations. We build on the idea of isolating independent
mechanisms to build disentangled representations. We propose a novel method for learning
to disentangle generative factors in the latent space by pressuring an explicitly mapped par-
tition of causal mechanisms. We separate counterfactual image generation into independent
causal mechanisms trained with supervision, creating a Disentangled Autoencoder. We
do this by applying a projection-based classifier obstruction algorithm called R-LACE on
latent space representations of the Colored MNIST dataset during training to separate the
encoding of distinct features. In experiments testing our method, we were able to achieve
disentanglement by partitioning the latent space into one subspace that encodes for digit
and one subspace that encodes for color. 1

1 Introduction

Deep neural networks (DNNs) have become a universal solution to modern statistical challenges. However,
these models suffer from poor data sample efficiency. Moreover, DNNs are neither robust nor generalizable
in comparison to biological intelligence [16, 19]. We attribute these shortcomings with DNNs to failures in
learning a faithful representation of the underlying data structure [1, 3]. The tendency of DNNs to entangle
features in latent representations leads to a reliance on spurious correlations (i.e. correlations that may not be
present in out-of-sample data), black-box behavior causing uninterpretable predictions, and non-compositional
representations [21, 23]. This is the motivation for an increasing body of work on disentangled representation
learning, which explicitly learn latent representations where generative factors of the data are orthogonal and
axis-aligned [6]. Disentangled representations have been shown to be more semantically interpretable [8, 15],
more generalizable to out-of-distribution data [22], robust to adversarial attacks [2], and useful to numerous
tasks including reinforcement learning [13], transfer learning [18], and sequential data generation [17].

To further concretize the problem, we provide an example. In the image classification domain, models may
employ features such as background color or background texture to classify foreground objects [5, 10]. For
instance, Beery et al. provides the example of a classifier trained to recognize cows in certain images [5].
Since images of cows in a real-world dataset will typically depict the animal against a green, grass textured
background, the model may learn to associate the presence of such a background with the label "cow". As a
result, a situation in which the model is given an image of a car parked on grassy field may yield the predicted
label of "cow" as well. In this example, the model failed to learn a meaningful latent representation of the cow
itself, but rather simply learned the simple correlational relationship of green, grassy background and the label
"cow". A disentangled representation that compositionally represents the background and the foreground
would not be susceptible to such spurious correlations [21].

Past research into disentangled representation learning includes InfoGAN, which maximizes the mutual
information between a fixed subset of noise variables and the observations [8], and β-VAEs, which introduces
a tunable constraint for implicit independence pressure on the learned posterior [12]. We build upon this

1Code available at https://github.com/surajK610/interventions-autoencoder
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idea of isolating independent mechanisms to build disentangled representations. This approach considers a
generative process to be a composition of a number of independent, naturally-arising features. For instance,
a common perspective for engineering image classification systems represents images as a composition of
the independently generated concepts of object, texture, and background. Recent work by Saur & Geiger
in Counterfactual Generative Networks isolates these mechanism by exploiting inductive biases specific to
shape, background, and texture [21]. In constrast, we aim to create a more general framework for isolating
independent mechanisms by employing linear projection to obstruct the superposition of specified features.
We pressure the formation of independent mechanisms within generative models through Relaxed Linear
Adversarial Concept Erasure (R-LACE). R-LACE removes a linear subspace of rank r from the embedding
vector space at a certain layer in the network by employing an adversarial minimax game. This method has
shown promising results when used in applications involving related to debiasing, such as removing gender
information from certain words and phrases [20].

We hypothesize that a DNN can learn independent mechanisms by explicitly pressuring independent generative
factors to occupy axis-aligned, orthogonal vector spaces. We accomplish this by continual projection,
obstructing classification in a linear probe of all but one independent generative factors in an axis-aligned
subspace of the latent space. Intuitively, this may be thought of as imposing an information bottleneck for
each independent mechanism that only enables flow through a certain region. This approach has the advantage
of a known explicit mapping to generation factors. However, the training procedure is not always stable and
causal mechanisms must be specified.

To demonstrate the viability of this approach, we show that we can learn independent mechanisms in the latent
space of a simple Autoencoder. We employ R-LACE to enforce independent mechanisms by partitioning the
latent space into discrete axis-aligned dimensions that are mapped to distinct features. Through this constraint,
we remove spurious inter-feature correlations and can generate. Our work makes the following contributions:

• We propose a generalizable framework for learning completely disentangled representations by
pressuring independent generative factors to occupy orthogonal (and axis-aligned) vector spaces.

• We present a procedure for training a simple image Autoencoder and that utilizes the projection-based
method of R-LACE to disentangle independent mechanisms within the latent space.

• We demonstrate the viability of our method by partitioning the latent space representation of a
Colored MNIST dataset into two disjoint orthogononal sets of dimensions that encode for color and
digit. We prove the use of these disentangled representations in warding against spurious correlations
and interpretable generation.

2 Methods

2.1 Problem Setting

The process of image generation and classification involves a dataset that consists of labeled images. Using
DNNs, we assume that the high dimensional image data can be broken down into a set of lower dimensional
features and concepts that convey some meaning. We consider the Colored-MNIST dataset [14], which
consists of labeled handwritten digits from 0-9 and colored either red, green, or blue. We construct colored
MNIST such that color and number are independent generated. We chose this scheme to verify that our
disentanglement methodology works. We aim to partition color and number into orthogonal, axis-aligned

Figure 1: Examples from the Colored-MNIST dataset
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dimensions. Using R-LACE, we seek to train a model that is invariant to learning such correlations by
disentangling the latent space into dimensions that represent color encodings, and dimensions that represent
digit encodings.

2.2 Relaxed Linear Adversarial Concept Erasure (R-LACE)

We approach the problem of disentangling the latent space representation of the Colored-MNIST dataset
through projection-based classifier obstruction. R-LACE formulates concept identification and removal
as a constrained, linear minimax game [20]. The method seeks to discover a low dimensional subspace
representing a particular feature. Upon removal of this subspace through an orthogonal projection of the
vector representation, we can eliminate the information regarding this concept (2).

The linear minimax game searches for an orthogonal projection matrix P that projects onto B ⊥, the
orthogonal complement of the bias subspace B. Let Pk be the set of all D×D orthogonal projection matrices
that neutralize a rank k subspace. Therefore, we have that

P ∈ Pk ⇐⇒ P = ID −W⊤W︸ ︷︷ ︸
Projects to null(W)

,W ∈ RK×D︸ ︷︷ ︸
rank(W)≤k

,WW⊤ = Ik︸ ︷︷ ︸
orthogonal

Where Ik represents the k × k identity matrix and ID is the D ×D identity matrix. Thus P neutralizes the k
dimensional subspace B = span(W ). The minimax game thus takes the following form:

min
θ∈Θ

max
P∈Pk

N∑
n=1

ℓ(yn, g
−1(θ⊤Pxn))

where k is a hyperparameter that represents the rank of the neutralized subspace, l is the loss function, and
g−1 is the inverse of a generalized linear model link function.

Figure 2: Left: a set of data with two linearly-separable features (ex. shape and color). Middle: taking the
orthogonal projection of the color boundary removes color information from the vector representations of the
data and obstructs color classification. Right: taking the orthogonal projection of the shape boundary has the
opposite effect [11]

2.3 Model Details

The full architecture of our autoencoder model is visualized in Figure 3. Built around a vanilla autoencoder
with a Mean Squared Error (MSE) objective function, our model encodes Colored-MNIST images into a low
dimensional latent space (d = 2n, n = 1, 2, 3, 5). To disentangle the latent space, we first apply R-LACE to
the first n dimensions to remove all information regarding color. We then apply R-LACE to the remaining n
dimensions to remove all information regarding digit. This effectively constrains the first n latent dimensions
to exclusively encode for the digit and the remaining n dimensions to exclusively encode for color.

The encoder network consists of several convolution, batch norm, and ReLU layers that encode input images
into a low dimensional latent space of size 2n, which in experiments was 6, 8, or 10 (n = 3, 4, 5) dimensions.
This latent space is then partitioned into two vectors, each with n dimensions. Next, we run R-LACE on the
first vector in order to remove the information in the vector regarding the color of the digit and only retain
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Figure 3: This autoencoder network makes use of R-LACE to disentangle the latent space and encourage
Independent Mechanisms in representing the training data. The network consists of a vanilla autoencoder
and a latent space modification step in which the encoded latent space is partitioned into two vectors. Each
vector is fed into R-LACE, which attempts to remove the information regarding one feature. Afterwards, the
transformed vectors are concatenated back into the latent space dimension and fed through the decoder.

information regarding the digit in the image. A similar process is done for the second vector such that it only
retains information regarding image color. Afterwards, these two augmented vectors are concatenated back to
a 2n dimensional “disentangled" latent space. Finally, the disentangled latent space is passed through the
decoder network which reconstructs the input image.

2.4 Disentangled Autoencoder Training and Evaluating

The training process of this modified Autoencoder architecture involves alternating between training the
Autoencoder to generate accurate reconstructions of the input images, and training R-LACE to learn the
orthogonal projection matrices that will remove color and shape information from the two latent vector
partitions. In practice, we employ a scheme that alternates between training the Autoencoder for n epochs,
and training R-LACE to remove a rank 1 subspace of information for 1 epoch.

2.5 Experiments

As a baseline, we first train a Vanilla Autoencoder with 4 latent dimensions and the same encoder and decoder
architecture as our Disentangled Autoencoder. We also train a logistic classifier on the latent space of the
Vanilla Autoencoder to determine a baseline level of digit and color classification accuracy.

Next, we train the Disentangled Autoencoder using the scheme describe in 2.4. We train a logistic classifier
on the concatenated latent space and compare the digit and color classification accuracy against the baseline.
To evaluate disentanglement, we train logistic classifiers on the partitioned latent subspaces that have been
orthogonally projected. We let a classifier for the “opposite" encoding refer to a classifier for a concept
that was trained on the latent partition that has had that concept removed through orthogonal projection (e.x
classifying digit using the latent partition encoding for color). Likewise, a “corresponding" encoding is a
classifier for a feature that has been trained on the partitioned latent subspace that encodes for that feature (i.e
classifying digit using the latent partition encoding for digit). We train an opposite and corresponding logistic
classifier for the both projected latent space partitions. These classification accuracy values inform the degree
of disentanglement achieved through R-LACE.

3 Results

Our experiments aim to determine whether using R-LACE to construct a Disentangled Autoencoder is able to
successfully disentangle the latent space into a set of dimensions that encode for digit and a set that encodes
for color, while preserving reconstruction accuracy compared to the Vanilla Autoencoder.
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(a) Visualization of the latent space from the
Vanilla Autoencoder

(b) The disentangled latent space dimensions
representing the digit. Here, color information
seems to have been removed through R-LACE
as there no longer appears to be linear separa-
bility for color.

(c) The disentangled latent space dimensions
representing image color. Here, information re-
garding the digit appears to have been removed,
as the digit classes are highly entangled in this
visualization.

Figure 4: Visualization of the disentangled latent dimensions from the Disentangled Autoencoder

After training the Vanilla Autoencoder for 100 epochs, we observe a reconstruction loss of 0.009. Next,
we train the Disentangled Autoencoder using the scheme described in 2.4 where the partitioned latent
dimension, n, is n = 1, 2, 3, 5. The reconstruction accuracy values and classification accuracy values are
shown in 1. These experiments indicated that a partitioned latent dimension of at least n = 3 is required to
successfully encode and reconstruct the images. When the partitioned latent dimension is too low (n = 1, 2),
the model struggles to adequately encode both color and digit. Since we remove information regarding a
particular feature from each latent partition, if the latent dimension is 2n, we are effectively allocating only n
dimensions for color encoding and n for digit encoding. Thus given a four dimensional latent space in the
Vanilla Autoencoder, we can expect digit reconstruction to behave roughly as a Vanilla Autoencoder with
only two latent dimensions. The poor reconstruction loss when n = 1, 2 is thus somewhat expected, as prior
work has shown that the MNIST dataset requires at least two latent dimensions to properly reconstruct the
images [4]. Moreover, when n = 1, we see random accuracy for both classes as RLACE removes a rank 1
subspace which contains all of the information.

As the size of the latent dimension partitions increases, we observe that reconstruction loss converges to
0.009 with a partition size of n = 3 andge 0.006 with a partition size of n = 5. However, digit and color
classification accuracy when measured using a classifier trained on the concatenated disentangled latent space
of size 2n appears to be slightly lower than that of the Vanilla Autoencoder, but still within acceptable ranges
2. These results validate the effectiveness of the Disentangled Autoencoder in reconstructing the Colored
MNIST dataset, thus retaining its functionality as an Autoencoder.

Next, we want to confirm whether R-LACE successfully remove information regarding color from the
dimensions encoding for digit and vice versa. In order to verify this condition, we train two linear classifiers
for each latent space partitions: one for digit and another for color. A successfully trained Disentangled
Autoencoder should allow for the classifier of the feature represented by the latent space partition, for instance,
digit, to perform as well as a baseline classifier on MNIST, while the classifier for color should perform about
as well as guessing. The results of these four classifiers on the various latent space dimensions are show in 3.

Based on these results, we see that when the latent partition size is only 1, the digit and color classification
accuracy is very poor, with a logistic classifier only capable of achieving random accuracy. For a latent
partition size of n = 2, we seem to achieve partial disentanglement of color and digit within the latent space.
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Reconstruction Loss Digit Classification Accuracy Color Classification Accuracy

.009 0.93 1.00

Table 1: Reconstruction and Classification Accuracy of Vanilla Autoencoder Trained on Randomly Colored
Digits

Latent Partition Size Reconstruction Loss Digit Classification Accuracy Color Classification Accuracy

1 .03 0.55 0.33

2 .02 0.51 0.95

3 .009 0.89 0.92

5 .006 0.89 0.97

Table 2: Reconstruction and Classification Accuracy of Disentangled Autoencoder.

Latent Partition Size Latent Dimension Digit Classification Accurracy Color Classification Accuracy

1 Digit Encoding 0.12 0.32

1 Color Encoding 0.12 0.32

2 Digit Encoding 0.42 0.31

2 Color Encoding 0.10 0.66

3 Digit Encoding 0.42 0.38

3 Color Encoding 0.32 0.94

5 Digit Encoding 0.74 0.48

5 Color Encoding 0.39 0.99

Table 3: Reconstruction and classification accuracy of Disentangled Autoencoder trained on randomly colored
digits

Within the latent subspace that has been modified by the orthogonal projection matrix for the vector subspace
representing color (i.e Digit Encoding), color classification accuracy is approximately random. These results
indicate that information regarding color has largely been removed from these dimensions as a logistic
classifier trained on this latent partition is unable to learn a means of identifying color. When we consider the
Color Encoding, digit classification accuracy is random, indicating full removal of digit information from the
Color Encoding subspace. However, we observe that the logistic classifier achieves poor performance on
the features encoded by the latent subspaces, with digit classification accuracy of only 0.42, indicating that
though information regarding features are being removed from the corresponding subspaces, the encoder may
be encoding information across latent subspaces that, when R-LACE is run, does not identify this information
as a rank-1 subspace that can be orthogonally projected.

At the highest latent subspace dimension tested (n = 5), we observe that digit classification accuracy is
much higher in the latent dimensions representing Digit Encoding, at 0.74. Likewise, color classification
accuracy using a logistic classifier on the Color Encoding yields nearly perfect accuracy at 0.99. These results
indicate that as the latent dimension partition size increases, the encoder seems to be able to learn to more
discretely encode a single feature into each latent partition. However, it is also apparent that using R-LACE
to remove a rank-1 vector subspace from each latent partition no longer perfectly removes the information
regarding the other feature. Namely, color classification accuracy in the digit encoding is 0.48, and digit
classification accuracy in the color encoding is 0.39, which are both significantly higher than random accuracy.
These values may indicate that the classifier is still able to learn some small amount of information regarding
the feature we are attempting to remove after we have performed the orthogonal projection. Despite this
possibility, the low accuracy achieved by the classifiers on the opposing encodings, along with the high
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accuracy of the classifiers on the corresponding encodings, serves as evidence for a high degree of latent
space disentanglement.

Our results indicate that for a latent partition size of 5 dimensions, we are able to achieve effective disentan-
glement of the latent space into two vector subspaces that exclusively encode information regarding either
color or digit. We therefore show that our Disentangled Autoencoder is able to achieve reconstruction loss
equivalent to that of the Vanilla Autoencoder while maintaining a disentangled latent space.

4 Discussion

In this research, we explore the hypothesis that a DNN can learn to disentangle generative factors in the
latent space by pressuring an explicitly mapped partition of causal mechanisms. In the context of current
disentangled representation learning, we believe that this is an altogether novel method and have not found any
similar methods in our literature search. Our method is unique in that it allows an explicit mapping of known
generative factors to the latent space. We find strong evidence that by continually obstructing classifiers on
the partitioned latent space, we may create an information bottleneck that forces disentangled generative
factors. We believe that this is an important pioneering effort into creating disentangled representations by
projection-based methods, and are excited about future work that builds upon this effort.

It is worth noting that our method strongly relies on the assumption that causal mechanisms are independent.
Without this assumption, we would not be able to obstruct classification of one generative factor without also
obstructing classification of other dependent factors. Moreover, we also assume the causal structure to be
known and assume the generative factors of our dataset to be known. One potential extension to our research
could utilize causal discovery to isolate independent mechanisms using techniques such as meta-learning
[7]. However, if causal structure is known, our method enables machine learning practitioners to enforce this
structure in a principled, yet flexible way, increasing sample efficiency, internal compositional representations,
and domain knowledge integration [9]. Furthermore, in contrast to traditional feature engineering domain
knowledge integration, our method maintains the functional approximation flexibility of an end-to-end neural
system. This marriage of causal structure and end-to-end neural function approximation can help us build
safer, better-aligned medical diagnoses systems, autonomous transportation, and chatbots.
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